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Expressions for the second and fourth frequency sum rules of the velocity auto-correlation function have 
been obtained for an isotopic fluid. These expressions and Mori memory function formalism have been 
used to study the influence of the particle mass and mole fraction on the self diffusion coefficient. Our 
results confirm the weak mass dependence of the self diffusion. The influence of the mole fraction of the 
light particles on the self diffusion constant has been found to increase for the larger particle mass. 
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1 INTRODUCTION 

In recent years a series of computer simulations'-' have been performed to investigate 
the mass dependence of the self diffusion coefficients in liquid mixture. In these studies 
Ar-Kr6 and isotopic mixtures have been of interest because of the simplicity. These 
systems are simple in the sense that the isotopes interact through the mass in- 
dependent potential and show identical structures and mean forces over every 
particle. In these systems difference in the self diffusion originates only from the mass 
difference of the particles. In some of these studies the influence of the particle mass 
on the self diffusion have been studied4 by taking only single heavy isotope in the 
system. The computer simulation studies have been found to be in agreement with 
the experimental observations of weak mass dependence of the diffusion constant. 
Various investigators3s437 have tried to interpret the mass dependence of the self 
diffusion coefficient D by an empirical relation given by 

where m, and m2 are the atomic masses of the light (main component) and heavy 
particle (isotope) in an isotopic mixture. The value of a has been found to be varied 
(0.064 to 0.1). Nothing conclusive, at the present, can be said about the dependence 
of ct on the mole fraction, density and temperature of the system. 
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22 K .  TANKESHWAR 

Theoretically, attempts1*8-9,10 ha ve been made to interpret the mass dependence 
of the self-diffusion coefficients. The kinetic theory prediction of cc is 0.5 which is 
much higher than what has been predicted by experiments and computer molecular 
dynamics (MD) investigations. Perturbation theory' has also been found to be 
unsuccessful at liquid density and for higher mass differences. The other approach 
which has applied to investigate the mass dependence of the self diffusion coefficients 
is through the Mori's memory function formalism' ' . 1 2 .  Toxvaerd4 has made the M D  
calculation of the Mori coefficients (or sum rules) of the velocity auto correlation 
function. His analysis using mori coefficients and the gaussian memory has shown 
that the Mori formalism does not support the relation (l), however it predicts the 
weak mass dependence of the self diffusion. It has also been demonstrated by him 
that gaussian memory increases and dominates with increase of mass differences. 

In the present work we have extended the work of the use of Mori formalism by 
deriving the explicit microscopic expressions of the sum rules of the velocity auto 
correlation function of an isotopic fluid mixture. The expressions are derived in 
Section 2. Our expressions are functions of masses rn, and m, and mole fraction. 
These expressions are useful in studying the mole fraction dependence in addition to 
the mass dependence of the self diffusion. In Section 3, we present the expression for 
the self diffusion coefficient. The influence of the mole fraction and mass on Mori 
coefficients and self diffusion coefficient is given in Section 4. Our results for the Mori 
coefficients has been found to be in very good agreement with M D  results of 
Toxvaerd. Our results confirm the weak mass dependence of the self diffusion 
coefficients. It has also been found that the influence of the mole fraction on self 
diffusion increases with increase in the mass difference. The conclusion is given in 
Section 5. 

2 EXPRESSIONS FOR SUM RULES 

We consider an N particle isotopic system with N = N ,  + N ,  where N ,  is the number 
of light particles of atomic mass rn, and N ,  is the number of heavy particles of atomic 
mass m2 = K m, ( K  > 1). The normalised velocity auto-correlation function (VACF) 
of such a system is defined as 

where ul , ( t )  is the x Cartesian component of the velocity of the particle with index 1 
at time t. The particle with index 1 can be either light or heavy and will be under 
the interaction of all other particles in the system. In Eq. (2) angular brackets denote 
the ensemble averages. The short time expansion of the VACF is given by 

where --V2 and V, are the so-called frequency sum rules of the VACF. These sum 
rules will be depending upon the choice of the particle with index 1 to be heavy or 
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SELF DIFFUSION IN ISOTOPIC FLUID 23 

light one. The expression for V,(m,) i.e., the second sum rule of VACF of the light 
particle in the isotopic mixture, is obtained to be 

where U l x x  = d2U(r l ) /dZr lx  i.e., second derivative of the pair potential U(r l ) ,  g (r , )  is 
the static pair correlation function and n is the number density. The expression for 
V,(m,) can be obtained from Eq. (4) by replacing m ,  by m 2 .  This implies that 

The expression for V4(m1) can be obtained by assuming particle labelled as 1 to be 
of mass m ,  and all other particles having mass m ,  or m2.  The calculation of V4(ml) 
is though simple, but tricky. Therefore, we state here some steps. We define V4(m,) as 

where u,,,(t) is double time derivative of ul lx( t ) .  The subscript 1 on v represents that 
particle with index 1 is a light particle. Defining 

From Eq. (7) it can be seen that the particle 1 is under the interaction of particles 
with index named as j and i which can be heavy or light ones. Substituting Eq. (7) 
in Eq. (6) and separating out the possible choices of the particles to be heavy or light, 
we finally obtain 

where, 

and 
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24 K .  TANKESHWAR 

In obtaining Eq. (8) we have assumed that in an isotopic system particles interact 
via the same interaction potential. In above equations and in what follows C is the 
mole fraction of the light particles, y 3 ( r 1 ,  r2)  is static triplet correlation function and 

The subscript 2 on U in Eq. (10) implies that argument of the pair potential U(r , )  
is changed from r 1  to r z .  

Here i t  may be noted that the terms in Eq. (8) with C as multiplicator are due to 
the light-light particle interaction, whereas terms containing (1 - C) appears as the 
result of light-heavy particle interactions. It may also be noted that Eq. (8) reduces 
to an expression of V, for an atomic (one component) systemI3 when m, = m2 or 
C = 1. The expression for V4(m,) can be obtained by assuming the particle 1 as heavy 
particle and following the procedure used for obtaining Eq. (8). The expression thus 
obtained is given by 

In this expression the terms containing (1 - C) and C as multiplicator are due 
to heavy-heavy and heavy-light particle interaction, respectively. 

Recently computer molecular dynamics calculation has been carried out4 by 
assuming only one heavy particle present in the system. For such a system the terms 
in Eq. (11) which appears as a result of heavy-heavy particle interaction will vanish 
as there will be no other heavy particle in the mixture. Following this we obtain 

The subscript s on V,(m2) represents an isotopic system with single heavy particle. 
In Eq. (13) 

( N  - 1) N n C ' = p - -  
V - V '  

where V is the volume of the system. 
The expressions for the fourth frequency sum rule obtained above are new results. 

These expressions are purely microscopic and tractable. It is expected that these will 
be useful in studying the self diffusion in an isotopic system. 
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SELF DIFFUSION IN ISOTOPIC FLUID 25 

3 EXPRESSION FOR THE SELF DIFFUSION 

The Green-Kubo expression for the self diffusion coefficient D is given by" 

where, k ,  and T are the Boltzmann constant and temperature, respectively. 
The exact evaluation of the time correlation function V(t)  is not yet feasible except 

for very simple cases and for some models of the fluids. However, at the molecular 
level the time correlation function can be obtained using the generalised Langevin 
equation : 

where M,(t)  is the first order memory function or relaxation kernel. In order to 
calculate the VACF from Eq. (15), the fundamental theoretical quantity to be 
calculated in this formalism is the M,(t). Although we have a microscopic expression 
for the memory function, its calculation is not simple and amounts to a solution of 
a many body problem. Therefore, several phenomenological forms of the memory 
function have been proposed in the literature and an extensive review of this has 
been given by Boon and Yip". In this work, we use a phenomenological form given 
by 

M,( t )  = 6, exp -6, - , ( 3 
where 6, and 6, are called Mori coefficients appearing in the continued fraction 
representation of the Mori equation (15). These Mori Coefficients are related to the 
sum rules by the relations 

6, = v, 
and 

v, 6 , = - -  v, 
V, 

(17) 

We have chosen the memory function to be gaussian because (1) it gives the exact 
short time behaviour of the correlation function and (2) it has been demonstrated by 
Toxvaerd that the gaussian memory increases and dominates as the isotopic mass is 
increased. The contribution of the gaussian memory to the self diffusion coefficient 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



26 

is given by 

K. TANKESHWAR 

From the expression and Eq. ( 5 )  it is clear that the mass dependence solely 
comes from d,(m,). In the next section we carry out the numerical calculation of the 
sum rules and the self diffusion coefficients with varying the mass of the isotope and 
the mole fraction. 

4 CALCULATION AND RESULTS 

In order to obtain the numerical estimates for the frequency sum rules from the 
expressions obtained in Section 2, we first perform the angular integration of the 
integrals appearing in Eqs. (4), (9) and (10). The method of angular integration is 
given in our earlier work' 3 * 1 4 .  The static pair contributions involve single integration, 
whereas the triplet contribution involves three dimensional integration. The inputs 
require for the numerical calculation of the resulting expressions are the interaction 
potential, the static pair and triplet correlation function. We use the Lennard-Jones 
(LJ) potential as the interaction potential. The static pair correlation function is 
calculated using the method Sung and ChandlerI5 based on optimised cluster theory. 
This g ( r )  has been in good agreementI6 with the molecular dynamics data. Due to 
a little information about the static triplet correlation function, we have used 
superposition approximation for it. Here it may be noted that this approximation 
has provided a good estimate for the triplet contribution to the V, as demonstrated 
in our earlier work on LJ system. The Gauss quadrature method have been used to 
compute the integrals. The accuracy of our numerical work is better than 5 percent. 
The values of V2(ml), 1,  and 1, at n* ( = na3) = 0.75 and T* = (kBT/&) = 0.9, where 
n and E are two parameters of the L J  potential having the dimension of length and 
energy, respectively, are obtained to be 

(mla2/e)V2(m,) = 225.14 

( m z a 4 i ~ 2 ) 1 1  = 83265.73 

(m204/e2)I, = 32054.37 

We have chosen this particular thermodynamic state in order to compare our 
results with the available computer simulation results of Mori coefficients and the 
self diffusion coefficients for the isotopic system. 

The numerical results obtained for the Mori coefficients 6,(m,) and 6,(rn,) of the 
isotopic mixture having only one heavy particle are given in Table 1 for variable 
mass. The available computer molecular dynamics results of Toxvaerd for such a 
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Table 1 Mori coefficients for single heavy isotopic mixture for T* = 0.9 and n* = 0.9. 

- 

- 

- 

- 

1 .o 
1.5 
2.0 
4.0 
6.0 
8.0 

10.0 
12.0 
14.0 
16.0 

225.14 226.4 7.8 656.94 
558.10 
5 10.67 
439.54 
415.83 
403.97 
396.86 
392.12 
388.73 
386.19 

659 f 7.5 0.072 
537 f 9 0.071 
498 f 17 0.069 
444 f 20 0.0658 

0.064 1 
0.063 
0.062 
0.061 3 
0.0607 

398 40 0.0602 

0.08 1 
0.073 
0.072 
0.066 
0.065 
0.064 
0.0635 
0.0630 
0.0628 
0.0621 

system are also given there for comparison. From Table 1 it can be seen that our 
results are in very good agreement with the simulation results. This suggests that the 
use of superposition approximation for the static triplet correlation function does 
not make any significant differences in the values of the sum rules. This is in 
accordance with our earlier conc l~s ion '~  for the LJ system. 

To see the effect of mole fraction on the Mori coefficients and hence on self diffusion 
coefficients we have calculated 6,(m,) and 6,(rn,) from Eqs. (8), (12) and (17) for mole 
fraction ranging from 0.5 to 0.9. The results obtained are plotted in Figure 1 for K 
(= m2/ml) = 2,4 and 16. From Figure 1 it can be seen that as the number of heavy 

I I 1 I I 1 I 
0.4 0.5 0.6 0.7 0.8 0.9 1 .o 

c -  
Figure 1 Variation of Mori coefficients with mole fraction, C for K ( =  m&,) = 2, 4 and 16. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



28 K .  TANKESHWAR 

particles in the mixture decreases the 6,(rnl) as well as 6,(m,) increases linearly with 
the almost same slopes for a given mass ratio. From this and Eq. (18) it can be seen 
that the self diffusion coefficient increases, irrespective of whether it is of light or 
heavy particle, with the increase in percentage of light particles in the mixture. This 
is due to the fact that light particles provides less resistance to the movement of the 
particle (light or heavy) than the heavier particles. 

The self diffusion coefficient of the isotopic fluid mixture is calculated from Eq. 
(18) using the values of the Mori coefficients from Table 1. The results obtained for 
D* = D(m/~cr)' ' are given in the same table for a system with only one heavy isotope. 
The results obtained from Eq. (1) by assuming r = 0.0641 (see Ref. 4) are also given 
in Table 1. It can be seen from Table 1 that for a large mass ratio our results are in 
good agreement with that obtained from Eq. (1). This agrees with the earlier 
conclusion of Toxvaerd. Table 1 also demonstrates the weak mass dependence of the 
self diffusion coefficient. 

In order to see the mole fraction dependence of the self diffusion coefficients, we 
have calculated D ( m , )  and D(m,) using Eq. (18) and the results of Mori coefficients 
plotted in Figure 1. The results obtained are given in Table 2. From Table 2, it can 
be seen that both D(ml) and D(m,)  increases with increase in the mole fraction of the 
light particles i.e., C .  This is an expected result as pointed out earlier. From the table 
it can also be seen that D(m,)/D(m,) decreases with the increase in the percentage of 
the light particles in the mixture. This decrease is more for large mass ratio. 

Table2 Values of the self diffusion coefficients for different mole 
fraction C,  and for different mass ratios, K. 

1 1 

- 0.5 
0.6 
0.7 
0.8 
0.9 

4 0.5 
0.6 
0.7 
0.8 
0.9 

16 0.5 
0.6 
0.7 
0.8 
0.9 

1 0.0654 
0.0668 
0.0682 
0.0696 
0.0710 

0.0555 
0.0580 
0.0603 
0.0626 
0.0619 

0.0467 
0.503 
0.0537 
0.0559 
0.05'99 

0.08 1 

0.0757 
0.0770 
0.0782 
0.0794 
0.0805 

0.0726 
0.0745 
0.0764 
0.0782 
0.0800 

0.0701 
0.0727 
0.0750 
0.0773 
0.0795 

1.157 
1.153 
1.147 
1.141 
1.134 

1.308 
1.285 
1.267 
1.249 
1.233 

1.501 
1.443 
1.396 
1.358 
1.327 
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5 SUMMARY A N D  CONCLUSION 

In this paper, we have obtained the complete expressions for the second and fourth 
frequency sum rules of the velocity auto-correlation function of the isotopic fluid 
mixture. The expressions presented here are new and are useful in the study of the 
mass and mole fraction dependence of the self diffusion constant. The numerical 
results obtained have been compared with those obtained using computer simulation 
method. A very good agreement has been obtained. These results for the sum rules 
and the Mori memory function formalism have been used to study the mass and 
mole fraction dependence of the self diffusion coefficients. Our results confirm the 
weak mass dependence of the self diffusion. The influence of the mole fraction of the 
lighter particles on the self diffusion has been found to increase for larger mass ratio. 
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